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Abstract

Research in oncology quality of care and health outcomes has been limited by the difficulty of 

identifying cancer stage in health care claims data. Using linked cancer registry and Medicare 

claims data, we develop a tool for classifying lung cancer patients receiving chemotherapy into 

early vs. late stage cancer by (i) deploying ensemble machine learning for prediction, (ii) 
establishing a set of classification rules for the predicted probabilities, and (iii) considering an 

augmented set of administrative claims data. We find our ensemble machine learning algorithm 

with a classification rule defined by the median substantially outperforms an existing clinical 

decision tree for this problem, yielding full sample performance of 93% sensitivity, 92% 

specificity, and 93% accuracy. This work has the potential for broad applicability as provider 

organizations, payers, and policy makers seek to measure quality and outcomes of cancer care and 

improve on risk adjustment methods.

1. Introduction

In the United States, it is estimated that 222,500 individuals will be diagnosed with lung 

cancer in 2017, and 155,870 will die of lung cancer (Siegel et al., 2017). Stage at lung 

cancer diagnosis is the most important factor associated with survival; the 5-year relative 

survival is 55% for those with localized disease compared with 4% for those with metastases 

at the time of diagnosis (Howlader et al., 2016). Historically, most lung cancers are 

diagnosed at late stages, when the chance for a cure is lower, although this may change with 

recent recommendations for lung cancer screening among current or former smokers 

(Moyer, 2014).
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Payers and other healthcare organizations are increasingly using administrative data to 

measure quality of care and patient outcomes. Oncology care is one area that has posed 

challenges to large-scale quality measurement due to the crucial importance of 

understanding clinical stage in assessing outcomes and the quality of care delivered. 

Identifying cancer stage from administrative data has numerous challenges, and studies that 

used claims-based algorithms to identify metastatic cancers, recurrence, or progression have 

not produced tools with consistently high sensitivity and specificity (Hassett et al., 2014; 

Chawla et al., 2014; Warren and Yabroff, 2015; Nordstrom et al., 2016). While some of the 

best performing algorithms have been decision trees that rely on secondary malignancy 

ICD9 codes and chemotherapy agents (Whyte et al., 2015; Nordstrom et al., 2012), 

published research in claims data has demonstrated an inability to achieve sensitivity and 

specificity in the full sample above 80% simultaneously. Although administrative claims 

data have become a commonly used source of “big data,” the absence of reliable claims-

based classification algorithms is a substantial barrier to conducting lung cancer outcomes 

research at a population level.

A decision tree based on clinical guidelines for care (NCCN, 2017) has been developed to 

predict early-stage lung cancer using cancer registry data linked with Medicare 

administrative data (Brooks et al., 2017). This clinical tree had poor performance in 

identifying patients with early-stage cancer, particularly with respect to sensitivity. In this 

paper, we aim to improve upon the clinical tree, and develop a tool for classifying lung 

cancer severity by (i) deploying ensemble machine learning for prediction, (ii) establishing a 

set of classification rules for the predicted probabilities, and (iii) using an augmented set of 

administrative claims data.

2. Study Cohort

Our study cohort contains detailed information on Medicare beneficiaries with lung cancer, 

combining data from the Surveillance, Epidemiology and End Results (SEER) cancer 

registry program and Medicare claims data (Potosky et al., 1993). SEER data provide a 

“gold standard” for assessing algorithm performance for staging because these data are 

abstracted from hospital medical records and contain reliable tumor morphology and staging 

information at the time of diagnosis. Additionally, fee-for-service Medicare claims data 

provide a rich set of variables for developing a classification algorithm and studying health 

outcomes.

2.1 Cohort Selection

Our data included cancers diagnosed in 2010-2011 linked with Medicare claims from 

2009-2012 who received at least one dose of infused or oral chemotherapy within six 

months of diagnosis. We combined the SEER registry data with the Medical Provider 

Analysis and Review (Part A short inpatient stay, long inpatient stay, and skilled nursing 

facility bills with one record per admission), National Claims History (Part B claims for 

non-institutional providers), Durable Medical Equipment (final action claims), outpatient 

claims (Part B claims from institutional outpatient providers), and Part D (prescription drug 

events) files. The National Claims History and Durable Medical Equipment files were 
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combined at the observation level, and the outpatient files at the claim level; Part D files 

were included if there were any National Claims History or outpatient records 59 days prior 

to the lung cancer diagnosis or including the lung cancer diagnosis. Additionally, we 

combined our cohort file with information on patient comorbidities from the Medicare 

Chronic Conditions Warehouse and on census tract-level variables from SEER-Medicare. 

After identifying 74,630 patients with known month and year of diagnosis, we excluded 

4,522 patients with unknown stage and 26,323 who were not continuously enrolled in Parts 

A and B of fee-for-service Medicare during the month of diagnosis and following six 

months. Of these 42,069, we identified 14,743 patients who were treated with chemotherapy 

within six months of diagnosis, had a lung cancer diagnosis on the chemotherapy claim, and 

had census tract-level information.

2.2 Feature Choices

To create our primary outcome variable, we grouped stages I-III into early stage and treated 

stage IV as late stage. Given differences in health outcomes for stage IV patients, this is 

often a preferred grouping. The clinical tree algorithm, developed in earlier work on a single 

split sample, is a decision tree with seven nodes that map to the binary outcome, described in 

Algorithm 1 (Brooks et al., 2017).

Algorithm 1: Clinical Tree.

* For each observation i§:

 * if no lung cancer-specific chemotherapy, then early stage;

  * else if advanced non-small cell lung cancer chemotherapy
†
 or stereotactic cranial radiation

†
, then late stage;

  * else if lung resection surgery
‡
, then early stage;

  * else if radiation 
∥
, then early stage;

  * else if small-cell chemotherapy agents and platinums only
†
, then late stage;

  * else if targeted agents
†
, then late stage;

  * else late stage.

§
who received any chemotherapy within 6 months of diagnosis

†
within 3 months of initial lung cancer chemotherapy

‡
lobectomy, pneumonectomy, or segmental resection in 3 months before initial lung cancer chemotherapy
∥
20 or more fractions beginning not more than 7 days before initial lung chemotherapy

Since the clinical tree algorithm is based on clinical guidelines for lung cancer care, it relies 

only on a small targeted set of clinical variables. It is of interest to compare how this set of 

limited variables – selected through investigator knowledge and national cancer treatment 

guidelines – performs relative to a larger more comprehensive set of variables. Thus, to 

augment the set of seven clinical variables in an effort to improve classification performance, 

we included additional variables that are readily available to the Centers for Medicare and 

Medicaid Services in administrative claims data. Specifically, we considered a broad set of 

features categorized into seven groups: demographic (25), visits and hospitalizations (10), 

chemotherapy drugs (30), surgery and procedures (4), radiation (19), comorbidities (14), and 

lung cancer anatomic site codes and secondary malignancy diagnosis codes (13). This last 

group of variables, ICD9 diagnosis codes for lung cancer anatomic site and secondary 
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malignancies, has been shown to be unreliable in previous population-based studies of lung 

cancer (Cooper et al., 1999; Nordstrom et al., 2012; Chawla et al., 2014; Warren and 

Yabroff, 2015; Whyte et al., 2015). Thus, we will consider three sets of variables, clinical 

algorithm only (7), clinical augmented with administrative claims except diagnoses codes 

(102), and all (115). See Appendix A, Table 4 for a description of each variable. Select 

demographic information is summarized in Table 1.

3. Methods

The goal of this analysis is to improve upon the clinical tree algorithm for classifying lung 

cancer patients into early and late stage based on SEER-Medicare data. Previous studies 

implementing machine learning methods to predict or classify different types of cancers 

have used neural nets, support vector machines (SVMs), decision trees, and logistic 

regression with varying degrees of success (Konstantina et al., 2015). Thus, in this setting, it 

is particularly unclear which single algorithm or set of variables will have optimal 

performance. Therefore, we deploy the super learner ensemble framework to build our 

prediction function (van der Laan et al., 2007) and consider multiple variable sets. The super 

learner yields an optimal weighted combination of candidate algorithms according to a 

specified loss function.

3.1 Data, Model, and Parameter

We now introduce formal notation for this applied problem. Our data structure is defined as 

O = (Y, C), where Y is our binary outcome for lung cancer severity, with Y = 1 indicating 

early stage, and C our vector of covariates. This vector of covariates can be broken into three 

mutually exclusive subsets C = (C1, C2, C3), with C1 including only the seven clinical 

variables used by the clinical tree from Algorithm 1, C2 containing 95 demographic, claims, 

treatment, and comorbidity variables, and the 13 lung cancer type and secondary malignancy 

diagnosis codes comprising C3. We write C1 ∪ C2 as C12 to represent the “clinical 

augmented with administrative claims except diagnoses codes” set of variables and C1 ∪ C2 

∪ C3 as C123 to represent the set of “all” variables, including the potentially unreliable ICD9 

codes for lung cancer type and secondary malignancies. (Note that C123 = C, but we use 

C123 in places to be explicit.) We also write C(·) when the set of covariates may be any of C1, 

C12, C123, etc.

We consider a nonparametric model M that is the set of possible probability distributions, 

and describe the observational unit O as being drawn from true probability distribution P0, 

where subscript 0 indicates the unknown truth. Succinctly, O | P0 and P0 ∈ M. Our 

nonparametric model assumes that our data are i.i.d., but does not impose additional 

functional form assumptions on the generation of Y, for example. Our parameter of interest 

for the prediction problem is Ψ(P0) = P0(Y = 1 | C(·)), which can also be written Ψ(P0) = arg 

minΨ(P)E0L(O, Ψ(P)), where E0L(O, Ψ(P)) is the expected loss. Given our binary Y, both 

the squared error loss and negative log loss functions target the same parameter Ψ(P0) = 

P0(Y = 1 | C(·))). Thus, we use L(O, Ψ(P)) = (Y − Ψ̂(P))2, where Ψ̂(P) is any estimator of 

Ψ(P0), and we seek to minimize the expected loss when building our prediction function. 

We describe additional evaluation metrics for the overall tool in Section 3.4.
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3.2 Estimation: Ensembling for Prediction

We describe the ensemble approach super learner (van der Laan et al., 2007) in Algorithm 2.

Algorithm 2: Super Learner

* For each algorithm k:

 * Perform V-fold cross validation, obtaining cross-validated predicted values Zk;

 * Fit on full data O, obtaining Ψ (P)k;

* Index a proposed family of convex combinations of the k algorithms by α;

* Select α to minimize E0L(O, Ψ(P)), which can be shown is solved by estimating:

logit(P̂(Y = 1|Z)) =α1Z1 + ... + αkZk;

* Save Ψ (P)SL, the final estimator of Ψ(P0) = P0(Y = 1|C), constructed as:

Ψ (P)SL = α1Ψ (P)1 + … + αKΨ (P)K.

Note: The entire super learner algorithm above is itself externally cross-validated to obtained cross-validated performance 
metrics.

Our implementation of super learner considered eight algorithms three times, once for each 

of the variable sets C1, C12, and C123, as well as the clinical tree in Algorithm 1, which, by 

definition, only uses C1. Thus, we consider a convex combination of a total of K = 25 

algorithms with our super learner forming a separate 26th algorithm. The eight algorithms 

were: (a) random forest with a node size of 250 and 500 trees; (b) neural net with two units 

in the hidden layer; (c) main terms logistic regression (GLM); (d) generalized additive 

model; (e) lasso penalized regression with λ chosen via internal cross-validation; (f) ridge 

regression with λ chosen via internal cross-validation; (g) balanced elastic net regression 

with α = 0.5 and λ chosen via internal cross-validation; and (h) SVM with a cost parameter 

of 1 and a Gaussian kernel width γ parameter of 1/length(C(·)). This specific implementation 

is also visualized in Figure 1. The analysis was performed using 10-fold cross-validation in 

R version 3.3.2 on an Oracle Sun Server X4-4 with 60 cores and 1.5TB of RAM with Linux 

software relying on the SuperLearner package (Polley et al., 2016).

3.3 Classification Rules

We establish two main thresholding rules for classifying probabilities into stage categories: 
(I) assignment based on the most likely class, and (II) assignment based on the percentile 

distribution of predicted probabilities. Within the first rule based on fixed probabilities, we 

explore thresholds of 50% ± 10 percentage points. A rule based on the median may provide 

better performance than a rule based on most likely class when the population is 

approximately balanced between the two outcomes and the algorithm provides strong 

discrimination. In our sample, the outcome group sizes are well balanced (49% had early 

stage cancer), but, in general, the proportion of patients with early stage cancer varies by 

cancer type and population. In unbalanced samples, or in cases where the algorithm has poor 

discrimination between the outcomes, a rule based on the empirical percentile distribution 

may be biased, while a rule based on most likely stage may provide better performance. To 

explore the potential for misclassification, we test five total percentile based rules: 30th, 40th, 
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50th, 60th, and 70th. Our classification rules are implemented and evaluated as part of the last 

step in our classification tool shown in Figure 1.

3.4 Evaluation Metrics

For prediction, we evaluate each of our 26 algorithms according to cross-validated mean 

squared error (MSE = Yi − Zk,i)2), cross-validated R2 = 1 − (∑i(Yi − Zk,i)2)/(∑i(Yi − Ȳi)2), 

and a cross-validated relative efficiency, RE = CV MSEk/CV MSESL. The best prediction 

function is selected based on lowest cross-validated MSE, but we do evaluate non-selected 

prediction functions in the next step for completeness. For classification, we then consider 

sensitivity, specificity, accuracy (defined as the proportion of true positives and true 

negatives), and area under the curve (AUC) for each rule specified. The published literature 

for cancer staging almost exclusively evaluates sensitivity, specificity, accuracy, and AUC in 

the full sample, and the goal of achieving sensitivity and specificity ≥ 80% is a metric for the 

full data. However, cross-validated metrics may be preferable to assess issues such as 

overfitting. Thus, we consider both full sample and cross-validated versions of these metrics. 

We establish the best performing classification rule to be the one that obtains the highest 

cross-validated AUC. Additionally, we plot the proportion of observed early stage lung 

cancer observation by ordered final predicted probability for our selected algorithm. Our 

metrics form the final component of the classification tool in Figure 1.

4. Results

The super learner prediction function contained five algorithms with nonzero weights:

Ψ(P)SL = 0.43Ψ(P)rfC123
+ 0.38Ψ(P)gamC123

+0.13Ψ(P)lassoC123
+ 0.03Ψ(P)svmC123

+ 0.03Ψ(P)rfC12
,

where rf is random forest, gam is the generalized additive model, lasso is the lasso 

regression, svm is the SVM, and C(·) subscripts indicate the variable set used. This super 

learner algorithm for predicting early stage cancer improved substantially upon the clinical 

tree algorithm with a cross-validated R2 of 0.405 and a cross-validated MSE of 0.149. The 

clinical tree had a relative efficiency of only 0.30, and its negative cross-validated R2 

indicates that the mean probability performs better than the predicted probabilities generated 

by the clinical tree. While the super learner had the overall best performance based on MSE, 

there were several individual algorithms, all using variable set C123 that had relative 

efficiencies of 94-98%. (See Table 2 for algorithm performance ranked by relative 

efficiency.)

When we apply the classification rules to the (cross-validated and final) predicted 

probabilities from the super learner function, all rules outperform the clinical tree algorithm 

in terms of improved sensitivity, accuracy, and AUC (Appendix B, Table 5). The 50% and 

median rules perform very similarly because the median predicted probability in our sample 

is 49%. The median rule performs the best with respect to cross-validated AUC and was 

thereby the selected rule. Table 3 shows the substantial classification improvement of the 
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super learner with median rule over the clinical tree algorithm for the full sample. Figure 2 

displays observed early stage by decile of predicted probability, showing the final super 

learner predicted probabilities classified according to the median rule has perfect prediction 
in the lower 30th and upper 30th of the probability distribution.

We plot cross-validated AUC by our variable sets C1, C12 and C123 for our algorithms using 

the median classification rule, including the super learner in each plot for reference, in 

Figure 3.

Overall, the largest gains in algorithm performance are driven by the inclusion of additional 

claims variables, although even using only variable set C1 (containing only 7 clinical 

variables) improved on the clinical tree in each of the eight individual algorithm for all 

metrics, some by at least 2-fold. The addition of the potentially unreliable ICD9 codes for 

lung cancer type and secondary malignancies (C3) in variable set C123 provided nontrivial 

improvements over variable set C12. Examining the logistic and lasso regressions using C123 

provides some insight into the variables driving the stark improvement in sensitivity. The 

largest coefficients from the logistic regression belong to variables based on the ICD9 

malignancy codes, including an indicator for having any malignancy code in the secondary 

malignancies series: 196 (lymph node sites), 197 (respiratory/digestive sites), or 198 (other 

sites) or the 199.0 code (malignant neoplasm without specification of site). The lasso 

selected 75 variables, including those related to resection, radiation, SEER registry region, 

chemotherapy agents, race, comorbidities, all ICD9 codes except 162.8 (lung cancer at other 

site), and sex. The largest coefficients from the lasso belong to variables indicating receipt of 

lobectomy, pneumonectomy, any stereotactic cranial radiation within three months of initial 

lung cancer chemotherapy, and any lung resection surgery in the three months prior to initial 

lung cancer chemotherapy. Additionally, some of the best performing candidate algorithms 

have not been previously used in the literature to stage lung cancer using administrative 

claims data.

5. Discussion

The development of an algorithm to classify lung cancer stage is needed to allow researchers 

to use administrative claims data for studying lung cancer patient quality of care and health 

outcomes. Prior work has been unable to simultaneously achieve 80% sensitivity and 

specificity. Earlier work evaluating the performance of the clinical tree algorithm (Brooks et 

al., 2017) echoed the suboptimal performance we confirm for it here. The overall conclusion 

has been that it is not possible to rely on claims data to conduct rigorous health outcomes 

research for lung cancer patients. Using an expanded set of variables and algorithms, we 

demonstrate that ensemble machine learning methods can be used to classify lung cancer 

patients receiving chemotherapy with 93% sensitivity, 92% specificity, and overall accuracy 

of 93%.

While the super learner yielded the best performance in terms of cross-validated MSE, 

several individual algorithms performed with a high degree of relative efficiency, including 

regression-based techniques. An alternative approach would be to a priori define an 

“improvement threshold” by which more complex algorithms must outperform in order to be 
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selected. That said, super learner classified 1,034 additional people as true positives and 

1,034 additional people as true negatives, resulting in a 14 percentage point improvement in 

accuracy, compared to the next best performing algorithm based on cross-validated MSE 

(GAM with C123). An improvement of this level is likely to be clinically meaningful, 

although may depend on the context and setting the tool will be used.

Future directions for this work include exploring multi-level classification (i.e., stage I/II, 

stage III, and stage IV) and reducing the number and complexity of features required for 

accurate performance. This latter advance would maximize the practical utility of the 

algorithm for health services researchers using claims data to study quality of care and 

health outcomes. We will also build classification algorithms for other cancer types. These 

tools will be published on the project website cancerclas.org as they are developed and 

validated.
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Appendix A

Table 4:

SEER-Medicare Data Features

Variable(s) Notes

Age (years) integer, 28–101

Sex binary

Census Tract Median Income integer, $7,104–200,000

Census Tract Non-HS Grad continuous, 0–79.91%

Census Tract Below Poverty continuous, 0–82.05%
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Variable(s) Notes

Race indicators black, asian, hispanic, other; reference white

SEER Registry Location 16 indicators

ICD9 162.0 Rate continuous; % lung cancer codes trachea site

ICD9 162.2 Rate continuous; % lung cancer codes main bronchus site

ICD9 162.3 Rate continuous; % lung cancer codes upper lobe site

ICD9 162.4 Rate continuous; % lung cancer codes middle lobe site

ICD9 162.5 Rate continuous; % lung cancer codes lower lobe site

ICD9 162.8 Rate continuous; % lung cancer codes other site

ICD9 162.9 Rate continuous; % lung cancer codes unspecified site

ICD9 Secondary Malignancy binary; any 196.xx, 197.xx, 198.xx, and 199.0 codes

ICD9 Secondary Malignancy Total integer, 0–93; total of 196.xx, 197.xx, 198.xx, 199.0 codes

ICD9 196.xx Rate continuous; % metastases codes lymph node sites

ICD 197.xx Rate continuous; % metastases codes respiratory/digestive sites

ICD9 198.xx Rate continuous; % metastases codes other sites

ICD9 199.0 Rate continuous; % metastases codes unspecified site

Claim Types 5 binary*

Claim Type Counts 5 integers*; total for each claim type

Lung Resection Surgery 4 binary**

Diagnosis Code at 1st Radiation indicators lung cancer, secondary malignancy, other; reference no non-stereotactic 
radiation

Radiation Types 2 binary
†

Radiation Code Totals 2 integers
†
; total for each radiation type

Radiation Fractions Type 4 binary
‡

Radiation Fractions Totals 3 integers
‡
; total for first 3 fractions types

Radiation Before Surgery indicators 1st before surgery, 1st after surgery, no surgery; reference none within 3 
months of chemo

Chemotherapy Type 17 binary
§

Chemotherapy Drug Totals 13 integers; # treatment days for each chemotherapy drug
§

Comorbidities 14 binary
¶

*
# outpatient evaluation and management (E&M) claims; inpatient E&M claims; critical care claims; hospital discharges; 

chemotherapy treatment dates.
**

Any resection surgery; lobectomy; penumonectomy; segmental.
†
Non-brain stereotactic radiation (77373, 77435); brain stereotactic radiation (77371, 77372, 77432).

‡
Radiation fractions within 3 mo of 1st chemo; non-stereotactic fractions within 180 d of 1st chemo; non-stereotactic 

fractions within 60 d of 1st radiation; ≥ 20 fractions starting ≤ 7 days before 1st lung cancer chemo.
§
Cisplatin, carboplatin, paclitaxel, docetaxel, pemetrexed, gemcitabine, vinorelbine, bevacizumab, etoposide, irinotecan, 

topotecan, trastuzumab, & unclassified drug. Add’l chemo indicators include: no receipt of lung cancer chemo; advanced 
NSCLC chemo; small-cell chemo agents & platinums only; targeted agents.
¶
Dementia; acute myocardial infarction; ischemic heart disease; stroke/TIA; atrial fibrillation; hip/pelvic fracture; heart 

failure; hypertension; hyperlipidemia; diabetes; asthma; COPD; depression; chronic kidney disease.
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Appendix B

Table 5:

Super Learner and Clinical Tree Classification Performance

Fixed Percentile Clinical
Tree40 50 60 30th 40th 50th 60th 70th

Full Sample

Sensitivity 97 93 85 100 99 93 80 61 53

Specificity 85 92 97 59 78 92 99 100 89

Accuracy 91 92 91 79 88 93 90 81 72

AUC 91 92 91 80 89 93 90 80 71

Cross-Validated

Sensitivity 87 78 67 95 88 79 67 53 31

Specificity 67 78 87 54 67 78 87 93 69

Accuracy 77 78 77 74 77 78 77 73 50

AUC 77 78 77 74 77 78 77 73 50
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Figure 1: 
Flowchart for Lung Cancer Severity Classification Tool
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Figure 2: 
Stage by Predicted Probability
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Figure 3: 
Cross-Validated AUC Plots by Variable Sets C(·)
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Table 1:

Demographic Summary by Stage, n = 14, 743

Early Late

Age, mean years (sd) 72 (8) 72 (8)

Male, % 54 55

White, % 83 83

Census Tract Below Poverty, % 12 11

Census Tract Non-High School Graduate, % 21 20
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Table 2:

Ranked Algorithm Performance

Algorithm CV R2 CV MSE RE

Super Learner 0.405 0.149 1.00

GAM: C123 0.396 0.151 0.98

Lasso: C123 0.395 0.151 0.98

Ridge: C123 0.395 0.151 0.98

Elastic Net: C123 0.395 0.151 0.98

Random Forest: C123 0.393 0.152 0.98

GLM: C123 0.392 0.152 0.98

SVM: C123 0.369 0.158 0.94

Random Forest: C12 0.300 0.175 0.85

GAM: C12 0.299 0.175 0.85

Ridge: C12 0.298 0.175 0.85

Lasso: C12 0.298 0.175 0.85

Elastic Net: C12 0.298 0.175 0.85

GLM: C12 0.297 0.176 0.85

SVM: C12 0.259 0.185 0.80

Neural Net: C1 0.220 0.195 0.76

GLM: C1 0.219 0.195 0.76

GAM: C1 0.219 0.195 0.76

Ridge: C1 0.219 0.195 0.76

Elastic Net: C1 0.219 0.195 0.76

Lasso: C1 0.219 0.195 0.76

SVM: C1 0.082 0.229 0.65

Neural Net: C12 0.000 0.250 0.59

Neural Net: C123 0.000 0.250 0.59

Random Forest: C1 −0.035 0.259 0.57

Clinical Tree −1.006 0.501 0.30
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Table 3:

Full Sample Classification Results

Super
Learner

Clinical
Tree

True Positives 6761 3865

False Negatives 490 3386

True Negatives 6881 6678

False Positives 611 814

Sensitivity 93 53

Specificity 92 89

Accuracy 93 72
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